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Abstract The hierarchical organisation of distributed sys-
tems can provide an efficient decomposition for machine
learning. This paper proposes an algorithm for coopera-
tive policy construction for independent learners, named
Q-learningwith aggregation (QA-learning). The algorithm is
basedon adistributed hierarchical learningmodel andutilises
three specialisations of agents: workers, tutors and consul-
tants. The consultant agent incorporates the entire system in
its problem space, which it decomposes into sub-problems
that are assigned to the tutor and worker agents. The QA-
learning algorithm aggregates the Q-tables of worker agents
into a central repository managed by their tutor agent. Each
tutor’s Q-table is then incorporated into the consultant’s Q-
table, resulting in a Q-table for the entire problem. The
algorithmwas tested using a distributed hunter prey problem,
and experimental results show that QA-learning converges
to a solution faster than single agent Q-learning and some
famous cooperative Q-learning algorithms.
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1 Introduction

Classical reinforcement learning (RL) algorithms attempt to
learn a problem by trying actions to determine how to max-
imise some reward. One such algorithm is Q-learning, which
represents the cumulative reward for each state-action pair in
a structure called a Q-table [34,35]. A major problem with
these algorithms is that their performance typically degrades
as the size of the state space increases [4,31]. Fortunately,
many large state space problems can be decomposed into
loosely coupled subsystems that can be processed indepen-
dently [11].

One of the most efficient known approaches for RL
decomposition of large size problems is the hierarchical
methodology [12,13,27,32]. In this approach, the target
learning problem is decomposed into a hierarchy of smaller
problems. However, current hierarchical RL techniques do
not allow migration of learners from one problem space to
another in distributed systems. Instead, they focus on decom-
posing the state or action space into more manageable parts,
and then statically assign each learner to one of these parts.

This paper proposes Q-learning with aggregation (QA-
learning), an algorithm for cooperative policy construction
for independent learners that is based on a distributed hierar-
chical learning model. QA-Learning reduces the complexity
of large state space problems by decomposing the prob-
lem into more manageable sub-problems, and distributing
agents between these sub-problems, to improve efficiency
and enhance parallelisation [2].

The QA-learning model includes three specialisations of
agents: workers, tutors and consultants. The consultant agent
is the highest specialisation in the learning hierarchy. Each
consultant is responsible for assigning a sub-problem and a
number of worker agents to each tutor. The worker agents
first learn the problem space of their tutor, then the tutor
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aggregates its workers’ Q-tables into its own Q-table. The
tutors’ Q-tables are then merged to create the consultant’s
Q-table. Finally, the consultant performs a small amount of
further learning over the entire problem space to optimise its
Q-table.

When a tutor finishes learning its sub-problem, the worker
agents assigned to that tutor are released to the consultant,
who can then reassign the workers to any tutors that are still
learning. Thus, rather than remaining idle, worker agents are
migrated to subsystemswhere they can help accelerate learn-
ing.This decreases the overall time required to learn the entire
system.

The remainder of the paper is structured as follows: Sect. 2
presents basic definitions, Sect. 3 discusses related work,
Sect. 4 introduces amotivating example, Sect. 5 discusses the
QA-learning algorithm, Sect. 6 discusses simulation results
using a distributed version of the hunter prey problem, and
Sect. 7 presents the conclusion of this paper and future work.

2 Background in machine learning

This section briefly summarises some of the underlying con-
cepts of reinforcement learning, and Q-learning in particular.

2.1 Markov decision process

AMarkov decision process (MDP) is a framework for repre-
senting sequential decisionmaking problems that facilitates a
decisionmaker, at each decision stage, to choose from several
possible next states [26]. MDPs are widely used to represent
dynamic control problems, where the parameters of theMDP
need to be learned through interaction with the environment
[1].

An MDP model is a 4-tuple [S, A, R, T ] where:

1. S = {s0, s1 . . . sn−1} is a set of possible states.
2. A = {a0, a1 . . . am−1} is a set of possible actions.
3. R : S × A → R is a reward function.
4. T : S × A × S → [0, 1] is a transition function.

In deterministic learning problems, all transition prob-
abilities can only equal 1 or 0. A transition probability
T (si , a j , sk) = 1 means that it is possible for transition from
state si to state sk by performing action a j , while a transition
probability T (si , a j , sk) = 0 means that the transition is not
possible . The reward received for completing this action is
R(si , a j ).

The main aim of MDPs is to find a policy π that can
be followed to reach a specific goal (a terminal state). A
policy is a mapping between the state set and the action set
π : S → A. An optimal policy π∗ always chooses the action
that maximises a specific utility function of the current state.

RL optimisation problems are often modelled using MDP
inspired algorithms [31].

2.2 Factored Markov decision process

A factored MDP (FMDP) is a concept that was first pro-
posed by Boutilier et al. [6]. A FMDP is an MDP with a
state space S that can be specified as a cross-product of
sets of state variables S = S0 × S1 × · · · × Sn−1. The
idea of factored state space is related to the concepts of
state abstraction and aggregation [10]. This idea is based
on the fact that many large MDPs have many parts that are
weakly connected (loosely coupled) and can be processed
independently [23]. In FMDPs, Ta denotes the state transition
model for an action a. This transition model is represented
as a dynamic Bayesian network (DBN). It uses a two-
layer directed acyclic graph Ga where the nodes S =
(S0, S1, . . . , Sn−1, S′

0, S′
1, . . . , S′

n−1). InGa , the parents of
S′

i are noted as the parentsa(S′
i ), where these parents are

assumed to be a subset of the state space parentsa(S′
i )⊂ S.

This means that there are no synchronous arcs from Si to
S′

j . The reward function R can be decomposed additively
γ1R0 + γ2R1, . . . ,+γn−1Rn−1 and the differences of the
decomposition do not depend on the state variables [36].

2.3 Q-Learning

Q-Learning is one of the best known RL algorithms that
provides solutions for MDPs. This algorithm uses tempo-
ral differences (a combination of Monte Carlo methods
and dynamic programming methods) to find mappings from
state-action pairs to values. These values are known as Q-
values, and are calculated using a reward function, called the
Q-function, that returns the expected utility of taking a given
action in a given state and following a fixed policy after that
[34,35]. The fact that Q-learning does not require a model of
the environment is one of its strengths [31].

An agent that applies Q-learning needs a number of learn-
ing episodes to find an optimal solution. An episode is a
learning period that starts from a selected state and endswhen
a goal state is reached. During an episode, the agent chooses
an action a from the set of possible actions from its current
state s based on its selection policy. The agent then receives
a reward R(s, a) and perceives ś, its new state in the environ-
ment. The agent then updates its Q-table based on equation
(1). This procedure repeats until the agent reaches the goal
state or a predetermined number of actions have been taken
without the agent reaching its goal, which marks the end of
the episode.

Q(s, a) ←− (1 − α) Q(s, a) + α [R(s, a)

+ γ maxá ∈AQ(ś, á)], where s ∈ S, a ∈ A, α ∈ [0, 1]
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is the learning rate, and γ ∈ [0, 1] is the discount factor.
(1)

The learning rate α determines how the acquired infor-
mation will affect the current Q-values. A higher α value
makes the agent prefers rewards received in later episodes
over earlier reward values. The discount factor γ determines
how much the current Q-values will be affected by potential
future rewards. The weight of future reward increases as the
value of γ approaches 1.

The main output of the Q-learning algorithm is a policy
π : S → A which suggests an action for each possible state
in an attempt to maximise the expected reward for an agent.
Some variations of Q-learning are combined with function
approximation methods such as artificial neural networks
instead of Q-tables to represent continuous large state prob-
lems [29].

2.4 Cooperative Q-learning

Cooperative Q-learning allows independent agents to work
together to solve a single Q-learning problem. Cooperative
Q-learning is typically broken into two stages: individual
learning, and learning by interaction. In the individual learn-
ing stage, each learner independently uses its ownQ-learning
algorithm to improve its individual solution. Then, in the
learning by interaction stage, a Q-value sharing strategy is
used to combine the Q-values of each agent to produce new
Q-tables.

An example of a Q-value sharing strategy is BEST-Q [17–
19]. In BEST-Q, the highest Q-value for each state-action
pair is selected from the Q-tables of all of the agents. Then,
each agent updates its Q-table by replacing each one of its
Q-values with the corresponding best Q-value:

Qi (s, a) ←− Qbest(s, a) (∀i, s, a), where i is the agent’s

identification number.

(2)

2.5 Classical hunter prey problem

The classical hunter prey problem is considered one of the
standard test problems in the field of multi-agent learning
[25]. Normally, there are two types of agents: hunters and
prey. Each agent is randomly positioned in the cells of a grid
at the beginning of the game. The agents can move in four
directions (up, down, right, left) unless there is an obstacle
to the movement direction, such as a wall or boundary. For
example, Fig. 1 shows a classical version of the hunter prey
problem of grid size 14 × 14 that involves 28 agents: 20
hunter agents (H) and eight prey agents (P).

Fig. 1 An example of classical hunter prey problem on a 14× 14 grid

In a typical hunter prey game, hunters chase the prey
agents, and the prey agents try to escape from the hunters. At
any instant, the distance between any two agents in a grid is
measured using the Manhattan distance [12].

3 Related work

This section is divided into two subsections. Section 3.1 dis-
cusses famous approaches of hierarchical decomposition in
theRL domain, while Sect. 3.2 discusses cooperative hunting
strategies for the hunter prey problem.

3.1 Hierarchical decomposition in the RL domain

Decomposition of MDPs can be broadly classified into two
categories. First, static decomposition which partially or
totally requires the implementation designers to define the
hierarchy [28,30]. Second, dynamic decomposition, inwhich
hierarchy components, their positions, and abstractions are
determined during the simulation process [11,16,32]. Both
techniques focus on decomposing the state or action space
intomoremanageable parts, and statically assign each learner
to one of these parts. None of these techniques allow the
migration of agents between different parts of the decompo-
sition.

Parr and Russell [28] proposed a RL approach called
HAMQ-learning that combines Q-learning with hierarchi-
cal abstract machines (HAMs). This approach effectively
reduces the size of the state space by limiting the learning
policies to a set of HAMs. However, state decomposition in
this form is hard to apply, since there is no guarantee that it
will not affect themodularity of the design or produce HAMs
that have large state space.

Dietterich [11] has shown that an MDP can be decom-
posed into a hierarchy of smallerMDPsbased on the nature of
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the problem and its flexibility to be decomposed into smaller
sub-goals. This research also proposed a MAXQ procedure
that decomposes the value function of an MDP into an addi-
tive combination of smaller value functions of the smaller
MDPs. An important advantage of MAXQ decomposition is
that it is a dynamic decomposition, unlike the technique used
in HAMQ-learning [5].

The MAXQ procedure attempts to reduce large prob-
lems into smaller problems, but does not take into account
the probabilistic prior knowledge of the agent about the
problem space. This issue can be addressed by incorpo-
rating Bayesian reinforcement learning priors on models,
value functions or policies [9]. Cao and Ray [9] presented
an approach that extends MAXQ by incorporating priors
on the primitive environment model and on goal pseudo-
rewards. Priors are statistic information of previous policies
and problem models that can help a reinforcement agent to
accelerate its learning process. In multi-goal reinforcement
learning, priors can be extracted from models or policies of
previous learned goals. This approach is a static decomposi-
tion approach. In addition, the probabilistic priors should be
given in advance in order to incorporate them in the learning
process.

Cai et al. [8] proposed a combined hierarchical rein-
forcement learning method for multi-robot cooperation in
completely unknownenvironments. Thismethod is a result of
the integration of options with the MAXQ hierarchical rein-
forcement learning method. The MAXQ method is used to
identify the problem hierarchy. The proposedmethod obtains
all the required learning parameters through learningwithout
any need for an explicit environment model. The cooperation
strategy is then built based on the learned parameters. In this
method, multiple simulations are required to build the prob-
lem hierarchy which is a time consuming process.

Sutton et al. [30] proposed the concept of options which
is a form of knowledge abstraction for MDPs. An option
can be viewed as a primitive task that is composed of three
elements: a learning policy π : S → A, where S is the
state set and A is the action set, a termination condition β :
S+ → [0, 1] and an initial set of states I ⊆ S. An agent can
perform an option if st ∈ I , where st is the current state of the
agent.An agent chooses an option then follows its policy until
the policy termination condition becomes valid. In this case,
the agent can select another option. A main disadvantage
of this approach is that the options need to be determined in
advance. In addition, it is difficult to decomposeMDPs using
this approach because many decomposition elements need to
be determined for each option.

Jardim et al. [20] proposed a dynamic decomposition hier-
archical RL method. This method is based on the idea that
to reach the goal, the learner must pass through closely con-
nected states (sub-goals). The sub-goals can be detected by
intersecting several paths that lead to the goal while the agent

is interacting with the environment. Temporal abstractions
(options) can then be identified using the sub-goals. A draw-
back of this method is that it requires multiple simulations to
define the sub-goals. In addition, thismethod is time consum-
ing and cannot easily be applied to large learning problems.

Generally, multi-agent cooperation problems can be mod-
elled based on the assumption that the state space of n agents
represents a joint state of all agents, where each agent i
has access to a partial view si from the set of joint states
s = {s1, . . . , sn−1, sn}. In the same manner, the joint action
is modelled as {a1, . . . , an−1, an}, where each agent i may
only have access to partial view ai . One simple approach to
modellingmulti-agent coordination is discussed in the survey
study of Barto and Mahadevan [5]. It shows that the concur-
rency model of joint state and action spaces can be extended
to learn task-level coordination by replacing actions with
options. However, this approach does not guarantee conver-
gence to an optimal policy since learning low level policies
varies at the same time as learning high level policies.

The study of Barto and Mahadevan [5] discussed another
hierarchical reinforcement learning cooperation approach.
This approach is a hyper approach that combines options
[5] and MAXQ decomposition [11] together. An option o =
〈I, π, β〉 is extended to a multi-option −→o = 〈o1, . . . , on〉,
where oi is the option that is executed by agent i . A joint
action value of a main task p, a state s and a multi-option −→o
is denoted as Q(p, s,−→o ). Then the MAXQ decomposition
of the Q-function can be extended for the joint action-values.

Hengst [16] proposedHEXQ, ahierarchicalRLalgorithm,
that automatically decomposes and solvesMDPs. It uses state
variables to construct a hierarchy of sub-MDPs, where the
maximumnumber of hierarchy levels is limited to the number
of state variables. The results are interlinked smallMDPs. As
discussed in [16] the main limitation of HEXQ is that it must
discover nested sub-MDPs and find policies for their exits
(exits are non-predictable state transitions and not counted
as edges of the graph) with probability of 1. This requires
that the problem space must have state variables that change
over a long time scale.

Tosic and Vilalta [32] proposed a RL conceptual frame-
work for agents’ collaboration in large-scale problems. The
main idea here is to reduce the complexity of RL in large-
scale problems through modelling RL as a process of three
levels: single learner level, co-learning among small groups
of agents and learning at the system level. An important
advantage is that it supports dynamic adaption of coalition
among agents based on continuous exploration and adaption
of the three layered architecture of the proposed model.

The proposed model of Tosic and Vilalta [32] does not
specify any communication scheme among its three RL
learning levels.Moreover, themodel suffers from the absence
of detailed algorithmic specifications on how RL can be
implemented in this three layered learning architecture.
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Guestrin and Gordon [14] proposed a distributed planning
algorithm in hierarchical factored MDPs that solves large
decision problems by decomposing them into sub-decision
problems (subsystems). The subsystems are organised in a
tree structure. Any subsystem has two types of variables:
internal variables and external variables. Internal variables
are the variables that can be used by the value function of
the subsystem, while the external variables cannot be used
because their dynamics are unknown. Although the algo-
rithm does not guarantee convergence to an optimal solution,
its output plan is equivalent to the output of a centralised
decision system. This proposal has some limitations. First,
although coordination and communication between agents
are not centralised, they are restricted by the subsystem tree
structure. Second, the definition of a subsystem as an MDP
composed of internal and external variables only fits decision
problems.

Gunady et al. [15] proposed a RL solution for the problem
of territory division on hide-and-seek games. The terri-
tory division problem is the problem of dividing the search
environment between cooperative seekers to reach optimal
seeking performance. The researchers combined a hierarchi-
cal RL approach with state aggregation in order to reduce the
state space. In state aggregation, similar states are grouped
together in two directions: topological aggregation and hid-
ing aggregation. In topological aggregation, the states are
divided into regions based on the distribution of obstacles. In
hiding aggregation, hiding places are grouped together and
treated as the target of aggregation action. A disadvantage of
this algorithm is that it requires the model information of the
environment to be known in advance.

The distributed hierarchical learning model described in
this paper is based on the structure of modern software
systems,where a system is decomposed intomultiple subsys-
tems. There are no restrictions on the structure of the system
hierarchy. Additionally, there are two levels of learning and
coordination between subsystems: at the subsystem level;
and at the system level. A major goal of this model is to han-
dle dynamic migration of learners between subsystems in a
distributed system to increase the overall learning speed.

3.2 Cooperative hunting strategy

Yong andMiikkulainen [37] described two cooperative hunt-
ing strategies that can be implemented in the hunter prey
problem. The first is a cooperative hunting strategy for non-
communicating teams that involves two different roles of
hunters: chasers and blockers. The role of a chaser is to fol-
low the prey movement, while the role of the blocker is to
move in a horizontal direction to the prey, staying in the ver-
tical axis of the prey. This allows the blocker to limit the
movement of the prey. The second strategy is also a coop-
erative hunting strategy for non-communicating teams, but

only involves chasers. In order for two chasers to sandwich
the prey, at least two chasers are required to follow the prey
in opposite directions to eventually surround the prey agent.
Both hunting strategies were experimentally proven to be
successful. One main advantage of these strategies is that no
communication is required between hunters. However, both
strategies require the prey position to be part of the state defi-
nition to provide the chasers and/or blockers with knowledge
of the prey’s position.

Lee [24] proposed a hunting strategy that also involved
hunter roles of chaser and blocker. In this paper, the roles of
hunters are semantically similar to the roles of the hunters of
the first strategy of Yong and Miikkulainen [37]. However,
the description of roles is relatively different. The chasers
drive the prey to a corner of the grid, while the role of block-
ers is to surround the prey so it does not have enough space
to escape. The hunting is considered successful if the prey is
captured. A main difference between blockers in this paper
and [37] is that blockers are required to communicate to sur-
round the prey agent. This is considered as a disadvantage of
the hunting strategy of [24]. Communication is a disadvan-
tage of the hunting strategy, because communication between
agents requires extra computation.

4 Distributed hunter prey problem

This section introduces a distributed version of the classi-
cal hunter prey problem to demonstrate how independent
agents can cooperatively learn a policy for a distributed large
state space problem. The main argument for this design is
that the reduction of a state space S into n state spaces,
S → {S0, S1, . . . , Sn−1, Sn}, accelerates convergence to the
optimal solutions [4,5,10].

Figure 2 shows a new version of the hunter prey problem
that is composed of 4 grids of size 7 × 7 [2]. Firstly, each
hunter learns to hunt the prey in its own sub-grid. If a hunter
finishes learning its own sub-grid then it can be migrated to

Fig. 2 Distributed hunter prey problem
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another sub-grid to enhance that sub-grid’s learning speed.
Then, once each sub-grid has been learnt, these solutions are
aggregated and enhanced to provide a policy for the entire
grid.

The cooperative hunting strategies in Sect. 3.2 are not
directly applicable for distributed hunter prey problems.
Those strategies require hunters to have knowledge of the
entire system, while hunters in the distributed hunter prey
problem only have knowledge of their local grid. However,
the semantic ideas behind chaser and blocker hunters can
still be implemented. Section 5.4 will describe one possible
implementation.

5 QA-Learning

5.1 Problem model

The problem model of Q-learning with aggregation (QA-
learning) is based on a loosely coupled FMDP organised into
two levels: system and subsystem. The loose coupling char-
acteristic of an FMDP means that each one of its subsystems
has or uses little knowledge of other subsystems [22].

A system is a tuple [S, A,W, T ], where S, A, and T are
defined as in an MDP (see Sect. 2.1) andW is a set of reward
functions R : S × A → R for different roles that may be
used in the system. A role can then be defined as an MDP
[S, A, R, T ], where R ∈ W .

A subsystem is a MDP with a connection set that defines
the subsystem’s boundaries with its neighbouring subsys-
tems. More formally, given a role Role = [S, A, R, T ], a
subsystem is a tuple Sub = [M,C], where

1. M = [Ssub, Asub, Rsub, Tsub] is a MDP where:

(a) Ssub ⊆ S is the set of states in the subsystem.
(b) Asub ⊆ A is the set of actions in the subsystem.
(c) Rsub : Ssub × Asub → R is a reward function such

that, given s ∈ Ssub, a ∈ Asub, r ∈ R, Rsub(s, a) =
r ⇐⇒ R(s, a) = r .

(d) Tsub : Ssub × Asub × Ssub → [0, 1] is a transition
function such that, given si , s j ∈ Ssub, ak ∈ Asub, t ∈
[0, 1], Tsub(si , ak, s j ) = t ⇐⇒ T (si , ak, s j ) = t .

2. C : Ssub × A × (S\Ssub) → [0, 1] is a connection set
which specifies how Sub connects to other parts of the
system such that, given si ∈ Ssub, a∈ A, s j ∈ S\Ssub, t ∈
[0, 1], C(si , a, s j )= t ⇐⇒ T (si , a, s j )= t .

5.2 Agent specialisations

The design of the hierarchical learning model of the QA-
leaning algorithm is based on the specialisation principle.

Fig. 3 Generalisation of QA-learning agents

This principle supports the separation of duties among agents
in distributed learning problems. The distributed hierarchical
learningmodel includes three agent specialisations: workers,
tutors and consultants (Fig. 3).

The following are the basic definitions of the three agent
types of the proposed learning hierarchy:

– Worker agents are learners at the subsystem level where
each worker can be assigned different roles.

– Tutor agents are coordinators at the subsystem level
where each subsystem has one tutor for each role. Each
tutor agent aggregates its workers’ Q-tables into its own
Q-table.

– Consultant agents are coordinators at the system level. A
distributed system has a consultant agent for each role
(or a single consultant may handle multiple roles). A
consultant agent learns the solution at system level by
incorporating its tutors’ Q-tables into its own Q-table
calculations. Consultant agents are also responsible for
redistributing worker agents among tutors to help accel-
erate the overall learning process

5.3 Migration of agents

A major design goal of the QA-learning algorithm is to
increase the efficiency of worker agents as much as possi-
ble. Worker agents in some subsystems might be working to
achieve their goals, while worker agents in other subsystems
may have completed theirs. Such a situation requires redistri-
bution of worker agents to the subsystems that are still active
to help learn each subsystem’s tasks more quickly. For exam-
ple, Fig. 4 shows that the hunter agents on sub-grid A have
finished hunting all their prey agents, while the hunting is still
active in sub-grids B,C and D. The workers assigned to the
tutor for sub-grid A should be redistributed to the remaining
sub-grids

The redistribution of worker agents is one of the responsi-
bilities of consultant agents. A consultant agent has amonitor
programme that uses two data structures to monitor tutor’s
activities. First, a service queue that is used to register the
tutors that are still active. An active tutor is onewhoseworker
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Fig. 4 Partially finished hunting. The hunter agents on sub-grid A have
finished hunting all their prey agents, while the hunting is still active in
sub-grids B,C and D

Fig. 5 Service queue and inactive list. The service queue is a first in
first out queue (FIFO) and the inactive list is a FIFO list. However, the
service queue can be implemented as a priority queue. This figure shows
the contents of the lists for the case shown in Fig. 4

agents are still performing or learning their assigned tasks.
Second, an activity list that is used to register inactive tutors
(inactive list). Figure 5 shows the contents of the service
queue and inactive list for the case shown in Fig. 4.

The monitor programme keeps track of the progress of
each tutor by recording the number of goals of each tutor,
and registering active tutors in the service queue. The moni-
tor programme also initiates the migration of worker agents,
when required. The monitor programme works as follows:

1. Register each tutor that is active and working to achieve
its goals in the service queue.

2. If any tutor finishes processing its goals, remove it from
the service queue, register it in the inactive list, and flag
the state of its workers as available.

3. Split the worker agents of the tutor agents registered in
the inactive list between the tutor agents in the service
queue.

4. Apply the migration procedure for all worker agents that
follow the tutor that is registered first in the inactive list.

5. Delete the first entry in the inactive list.
6. Go to step 1.

The algorithm that performs the migration is inspired by
the research of Boyd and Dasgupta [7] and Vasudevan and
Venkatesh [33] in the field of process migration in operating
systems. However, the migration algorithm is an applica-
tion level algorithm that organises the migration process of
reinforcement learners between subsystems. The migration
algorithm consists of the following steps:

1. The consultant agent declares the migrant worker to be in
a migrating state at subsystem level and at system level.

2. If migrant worker is running in client server mode:

(a) Duplicate migrant worker.
(b) Maintain a communication channel between the

migrant worker and its copy for the rest of the steps.
(c) Go to step 5.

3. Write the problem space of themigrated agent to the tutor
of the source-subsystem.

4. Terminate the migrant worker process or thread.
5. Relocate the migrant agent to a new subsystem.
6. Inform the destination subsystem’ tutor of the migrant’s

new location.
7. Resume the agent thread.
8. Allocate problem space to the migrant agent.
9. Resume the execution of migrant agent.
10. If a worker agent finishes execution and is running in

mobile agent mode:

(a) Terminate the migrant agent process or thread.
(b) Deallocate memory and data of the migrant agent.
(c) Relocate the migrant agent to its original subsystem.

Steps 3 and 8 of the migration algorithm are related to the
problem space of RL agents. The problem space is related to
the MDP model described in Sect. 2.1.

5.4 Roles of worker agents

Worker agents can play different roles to perform tasks at the
subsystem level. As coordinators, consultant agents and tutor
agents are responsible for assigning roles to worker agents.

The semantic idea behind both chaser and blocker hunters
(Sect. 3.2) can still be implemented to the distributed hunter
prey problem (Sect. 4). The following strategy presents a
solution for the hunter chasing prey over a grid system:

– Chaser hunter: each chaser hunter learns to chase and
catch the prey agents inside its sub-grid. Each chaser
hunter inherits the problem space and the Q-table of its
tutor agent.

– Blocker hunter: each blocker hunter learns to occupy
some blocking cells in the corners of a its sub-grid to
stop prey from moving in that direction. Each blocker
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Fig. 6 Blocker and chaser agents in a distributed hunter prey problem.
The number of chaser agents in the target prey’s sub-grid is 2. Each
adjoining sub-grid to the target prey’s sub-grid has two blocker agents

hunter inherits the problem space and the Q-table of its
tutor agent.

Figure 6 shows an example of a hunting strategy applied
to an instance of the distributed hunter prey problem. In this
figure, the chaser hunters are located in the same grid as
the target prey, while the blocker hunters are located in the
neighbouring grids of the target prey. In general, the idea is
for the blocker hunters to funnel the prey through the centre
of the neighbouring sub-grid, where the chaser hunters can
catch it. There are two blocker cells in each corner of the
neighbouring sub-grid of the target prey, which the blocker
hunters target.

Consultant agents use the hunting algorithm in Fig.7 to
choose the blocker and chaser hunters. In the beginning,
the algorithm identifies the prey agents of each grid that are
most likely to escape (target prey agents) to other grids (Line
2). The algorithm then chooses a specific number of worker
hunters to chase each target prey agent (Lines 4 and 5). The
chaser hunters of each target prey should be the nearest non-
specialised worker hunters to each target prey. These chaser
agents inherit the problem space of the tutor agent of the
chosen sub-grid (Line 5). The algorithm then continues by
choosing a specific number of worker hunters on each neigh-
bouring grid of each target prey agent to be blocker hunters.
The blocker hunters of each target prey should be the nearest
non-specialised worker hunters to each target prey (Lines 6
and 7). These blocker hunters inherit the problem space of

Fig. 7 Hunting algorithm

the tutor hunters of the neighbouring sub-grids of the target
prey’s sub-grid (Line 8).

5.5 QA-Learning algorithm

The QA-learning algorithm comprises two learning stages:

– First learning stage In this stage, each worker agent
copies its tutor’s Q-table into its own Q-table and applies
Q-learning to improve the tutor’s solution. After each
period of individual learning, the tutor aggregates its
workers’ Q-tables into its own Q-table using the Q-value
sharing strategy of BEST-Q [17–19].

– Second learning stage This stage takes place at the end
of the first stage. In this stage, the consultant agent incor-
porates the Q-tables of its tutors into its Q-table for the
entire system.

Figure 8 shows the QA-learning algorithm. In this algo-
rithm, lines 4–34 represent the first stage of QA-learning
while lines 35–53 represent the second stage of QA-learning.
In the first stage of the algorithm, each tutor assigns a copy
of its Q-table to each one of its worker agents then the
worker agents learn independently for a number of episodes
to improve their individual solution (lines 4–21). After the
end of the individual learning stage, each tutor aggregates
the Q-tables of its worker agents into its own Q-table using
BEST-Q (lines 22–30). If any tutor finishes learning, its iden-
tity is stored in the inactive list (lines 30–33) and its worker
agents are reassigned to tutor agents that are still active. The
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Fig. 8 The QA-learning algorithm

first learning stage repeats until each tutor completes learn-
ing. In the second stage, the consultant aggregates theQ-table
of each tutor agent into its Q-table using the connection sets
of the tutors (lines 35–37). The consultant then attempts to
improve its Q-table’s solution by applying Q-learning to its
Q-table (lines 38–53) starting the beginning of each episode
from an initial state that belongs to the connection set of
one of its tutor agents (lines 39–41). The consultant relearns
its tutors’ solutions in order to connect the tutors’ Q-tables
through a small number of exploratory learning steps.

6 Experiments

Two versions of the QA-learning algorithm were imple-
mented: QA-learning with support for migration and QA-
learning without migration. These two versions were com-
pared with Q-learning, MAXQ, HEXQ and HAMQ-learning
for different instances of the distributed hunter prey problem.

6.1 Setup

Three different grid sizes were selected to test the algo-
rithms on small, medium, and large problems. In the first
experiment, a grid size of 100 × 100 was used. The sec-
ond experiment used a grid size of 200 × 200, and the third
500×500. Each experiment included 16 prey, with four prey
distributed randomly in each quarter of the grid.

Two chaser hunters and three blocker hunters were
assigned to each tutor. The Q-tables of each worker in the
same role (chaser or blocker) were aggregated into the tutor’s
Q-table for that role after each 25 learning episodes.

The reward that each agent receives was defined as:

R(s, a) =
{+100.0 if it reaches its goal
0 otherwise

The learning parameters were set as follows:

– As suggested in [3,21], the learning rate α = 0.4 and the
discount factor γ = 0.9 for the Q-learning algorithm and
the two learning stages of the QA-learning algorithm.

– As suggested in [16], the learning rate α = 0.25 and the
discount factor γ = 1 for HEXQ and MAXQ.

– As suggested in [28], the learning rate α = 0.25 and the
discount factor γ = 0.999 for HAMQ-learning.

– The selection policy of actions for all algorithms was the
Softmax selection policy [31]:
Given state s, an agent tries out action a with probability

ps(a) = e
Q(s,a)

T

n∑
b=1

e
Q(s,b)

T
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Fig. 9 Experiment 1: average
number of moves per 25
episodes in a distributed hunter
prey problem of a grid size
100 × 100

In the above equation, the temperature T controls the
degree of exploration. Assuming that all Q-values are
different, if T is high, the agent will choose a ran-
dom action, but if T is low, the agent will tend to
select the action with the highest weight. The value of
T was chosen to be 0.7 to allow expected rewards to
influence the probability while still allowing reasonable
exploration.

ForQA-learning, a parallel scheduling algorithmwas used
and each grid was split into four quarters (i.e. the 100× 100
grid was split into four 50 × 50 sub-grids, the 200 × 200
grid into four 100 × 100 sub-grids, and the 500 × 500
grid into four 250 × 250 sub-grids. Decomposition of a
problem into sub-problems is currently a manual process
by the implementation designer. Thus, to demonstrate QA-
learning, the decomposition of the problem space into four
sub-grids was used for each problem size. While this is
sufficient for an initial evaluation of QA-learning, the algo-
rithm is in no way limited to any number of sub-problems
and further research will be needed to determine optimal
decompositions.

HAMQ-learning,HEXQandMAXQused twovalue func-
tions: blocker and chaser value functions. The state variables
for the chasing subtask are the position of the prey and the
position the hunter while the state variables for the blocking
subtask are the position of the blocker and the position of the
blocking cell.

The learner in HEXQ explored the environment every 25
episodes and kept statistics on the frequency of change of
each of the state variables. Each hierarchical exit is a state-
action pair of the form (position of the goal, capture).

In all experiments, the position of each hunter agent was
chosen randomly at the beginning of each episode.A learning
episode ended when the hunter agents captured all the prey

agents, or after 5000 moves without capturing all the prey
agents. An algorithm is said to have converged when the
average number of moves in its policy improves by less than
one move over d consecutive episodes where d = n/2 for a
grid size of n × n.

6.2 Results and discussion

This section compares the performance of QA-learning with
migration, QA-learning without migration, MAXQ, HEXQ,
HAMQ-learning, and single agent Q-learning in the distrib-
uted hunter prey problem.

Figure 9 shows the average number of moves per 25
episodes required to capture all the prey agents in a distrib-
uted hunter prey problem of size 100×100. For QA-learning
with migration, each tutor converges to a solution for its sub-
grid after 175 episodes of learning, which marks the end of
the first learning stage. The consultant converges to a solu-
tion after 375 episodes meaning that QA-learning converges
after 550 episodes to a solution for the whole grid. On the
other hand, QA-learning without migration converges after
750 episodes,MAXQconverges after 2450,HAMQ-learning
converges after 1200, HEXQ converges after 1600 episodes,
and basic Q-learning converges after 3900 episodes. These
results suggest that the performance of QA-learning with
migration is better than the other algorithms. This is because
QA-learning allows multiple tutors to learn in parallel then
the consultant combines their solutions through a small num-
ber of learning episodes. Even if tutors donot learn in parallel,
the total number of learning episodes1 required to converge
to a solution (175 × 4 + 375 = 1075), is only 27.6 % of

1 Duration of the first stage of QA-learning × the number of tutors +
duration of the second learning stage until the consultant convergence
to a solution.
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Fig. 10 Experiment 2: average
number of moves per 25
episodes in a distributed hunter
prey problem of a grid size
200 × 200

Fig. 11 Experiment 3: average
number of moves per 25
episodes in a distributed hunter
prey problem of a grid size
500 × 500

the number of episodes required for single agent Q-learning,
(43.9 % for MAXQ, 67.2 % for HEXQ, and 89.6 % for
HAMQ-learning. The support of migration of learners pro-
vided by QA-learning accelerates the learning process even
faster as shown in the figure. Further, since the tutors in
the QA-learning scenario are learning smaller subsets of the
overall problem, their individual learning episodes are typi-
cally of shorter duration.

Figure 10 shows the average number of moves per 25
episodes required to capture all the prey agents in a distrib-
uted hunter prey problem of size 200×200. For QA-learning
with migration, the tutors finish the first learning stage after
300 episodes, and the consultant converges to a solution
after 400 episodes. Single agent Q-learning requires 37,525

episodes to converge to a solution. This is much more than
the training time required for QA-learning. If QA-learning
did not support parallel execution of learners, the total num-
ber of learning episodes required to converge to a solution
would be 300 × 4 + 100 = 1300, only 3.5 % of the num-
ber of episodes required for single agentQ-learning (37,525),
15.2% ofMAXQ (8575), 26.1% of HAMQ-learning (4975)
and 44.1 % of HEXQ (2950).

Figure 11 shows the average number of moves per 25
episodes required to capture all the prey agents in a dis-
tributed hunter prey problem of size 500 × 500. In this
experiment, QA-learning withmigration converges to a solu-
tion after around 300 episodes (stage one: 225, stage two:
75). If the tutors at the first stage execute sequentially, the
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Table 1 The ratio of the
number of episodes in the
cooperative learning algorithms
to the number of episodes in
Q-learning

Experiment 1 (%) Experiment 2 (%) Experiment 3 (%)

Parallel QA-learning 14.1 1.1 0.8

Sequential QA-learning 27.6 3.5 2.59

MAXQ 58.3 22.85 23.4

HAMQ-Learning 30.8 13.3 11.5

HEXQ 41 7.9 6.6

Table 2 The running time of
Q-learning vs the running time
of the other algorithms in
seconds

Experiment 1 Experiment 2 Experiment 3

Q-Learning 583 68,662 509,417

QA-Learning without migration 167 1121 8409

QA-Learning with migration 160 683 4198

MAXQ 383 13,977 75,600

HAMQ-learning 232 8109 68,400

HEXQ 287 4808 21,047

total number of episodes required to converge to a solution
is 225 × 4 + 75 = 975. The results in Fig. 11 show that
Q-learning and the other cooperative Q-learning algorithms
perform worse than QA-learning. The Q-learning algorithm
converges to a solution after 37,550 episodes. Thismeans that
Q-learning requires almost 38 times the number of learning
episodes required for QA-learning.

The overall results of the experiments suggest that QA-
learning performs better than single agent Q-learning and the
other cooperative Q-learning algorithms even in the sequen-
tial learning case and without the support of migration of
learners. The performance difference in the parallel execu-
tion case of QA-learning became even larger as the task
size increased (see row 1 of Table 1); in Experiment 1 QA-
learning required 14.1 % of the episodes of single agent Q-
learning, in Experiment 2 QA-learning required only 1.1 %
of the episodes of single agent Q-learning, and in Experiment
3 QA-learning required only 0.8 % of the episodes of sin-
gle agent Q-learning. Row 2 of Table 1 shows that sequential
QA-learning reduces the required learning episodes of single
agentQ-learning. This is because the learners in the first stage
of QA-learning can quickly learn the smaller subsets of the
original problem. This also means that the average length of
an episode in QA-learning is shorter than the average length
of an episode in single agent Q-learning.

The experiments were conducted using an Intel Xeon 3.4
GHzCPUwith16GBRAMrunning64-bitWindows.Table 2
shows the running time of the different algorithms for the
three experiments in seconds. While the running time of
both learning algorithms increases as the size of the prob-
lem increases, QA-learning is much faster for each of the
three experiments. The smaller sub-problem size, combined
with its parallel learning, makes QA-learning much more
efficient.

7 Conclusion and future work

The hierarchical organisation of distributed systems provides
an efficient decomposition of large problem spaces into more
manageable components. This paper introduced the QA-
learning algorithm for cooperative policy construction for
independent learners that is based on three specialisations
of agents: workers, tutors and consultants. Each consultant
is responsible for assigning a sub-problem and a number of
worker agents to each tutor. The worker agents first learn
the problem space of their tutor, then the tutor aggregates its
workers’ Q-tables into its own Q-table. The consultant then
merges the tutors’ Q-tables to create its Q-table. Finally, the
consultant performs a few rounds of Q-learning to optimise
its Q-table.

The QA-learning algorithm has many advantages. First,
the problemmodel of the QA-learning algorithm is a loosely
coupled FMDP. This model reduces the complexity of large
state space problems by taking advantage of the decompos-
able nature of the system itself.

Second, worker agents that have finished learning can be
reassigned by the consultant to another tutor that is still learn-
ing to accelerate its learning process. This decreases the time
required for the consultant agent to learn the entire system.

Finally, the results of the pilot experiments suggest that
QA-learning performs faster than conventional Q-learning
and other famous cooperative Q-learning algorithms, even
if the tutors do not learn in parallel. Further, the average
length of an episode in QA-learning is shorter than the aver-
age length of an episode in the other algorithms.

Currently, the decomposition process of QA-learning is
the duty of the implementation designers. It goes hand in
hand with the process of the design of distributed systems.
This means that all decompositions need to be predefined
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and have to be compatible with the distributed organisation
of the system.

Future work includes the implementation of QA-learning
in single goal hierarchical systems, the automatic identi-
fication of subsystems, the reusability of sub-solutions in
QA-learning, and the applicability of QA-learning in par-
tially observable environments
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